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THE UNSTEADY SPATIAL LAMINAR BOUNDARY LAYER IN MAGNETOHYI)RODYNAMICS 
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The equations of the unsteady plane laminar magnetohydrodynamic 
boundary layer have been solved by several authors ([1-4], for in- 
stance). Below we solve some problems for the following cases of 
spatial flows. 

1. The boundary layer on an infinitely long cylinder to which a 
translational velocity and rotation are instantaneously imparted. 

2. The boundary layer on a sideslipping wing which has begun to 
move with constant velocity. 
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I. BOUNDARY LAYER ON CYLINDER ROTATING IN AN AXIAL FLOW. 

A) The equation of motion of a viscous fluid in the presence of a 

magnetic field normal to the surface of a body can be written in the 
approximate form [1] 

d V  
dt - -  - -  p~IVp @ vV"V --  ~p-1B~V.  (1.1) 

Where V is the velocity vector, p is the pressure, p is the density 
B 0 is the magnetic induction, o is the electrical conductivity of the 
fluid, v is the kinematic viscosity, and t is the time. 

Assume that the thickness of the boundary layer is small in com- 
parison with the cylinder radius. Then, for the case under considera- 
tion with a constant translational velocity U0 and a constant angular 
velocity w the projections of Eq. (1.1) onto the axial and circular 
direction lines when the magnetic field is fixed relative to the fluid 
(case a) will be 

O~ 0% Ov 02v 
Ot - -  v ~z~2 - -  ~ p - l B ~ u ,  -ff~ = v - ~ .  - -  p~-lB0ev. (1.2) 

Here u and v are the velocity components in the boundary layer 
along the cylinder axis and in the circular direction; z is the coordi- 
nate measured along the perpendicular from the cylinder surface. 

If the magnetic field is rigidly connected with the cylinder (case 
b), then 

Ou O~'u 
"~- = v ~ -- Op-1Bo *" (u -- go), 

a v  a ~  , - 1  . 

at -- v~j,~ - -zp  B o - ( v - - ( o r 2 ) ,  (1.3) 

where r 0 is the cylinder radius. 
Equations (1.2) with corresponding boundary conditions are simi- 

lar to those for the boundary layer on an infinite flat plate. Their 
solution can be found in [1]. 

B) If the thickness of the boundary layer is comparable to the cy- 
linder radius, Eqs. (1.2) are no longer valid. We write the equations 

for case a in a cylindrical coordinate system 

cgu v O ( O u )  
Ot - -  r Or r - ~ -  - -~p- lBo~u  , 

av F 1 0 (r Ov I v 
(1 .4 )  

The boundary and initial conditions are 

u = U o ,  v=COro w h e n r = r  2 t > O ,  

as r ~ r o  t=( ) ,  
u *0, v-->O - - 

- as r ~ o o ,  t ~ 0  

Converting (1.4) and (1.5) to the dimensionless variables 

u0 = u o v vt r ~  r - ,  (1.5) 
u - ~ '  v = ~ o '  To = r~ ~ , ro 

and henceforth omitting the subscripts 0 in the dimensionless quantities, 
we obtain 

0. I 0 ( r 0 ~  
O~ - -  r Or \ Or } - -  M~"u' 

Ov 1 0 i O r \  _~ ( zBo~ro  ~-~'12 
a T -  r Or L r ~ - ) - - ( r  4 - M  ~) v,  M = \ ~ / }  , (1 .6 )  

u = t ,  v = l  when r = t ,  ~ > 0 ,  

u-~O, v *0 when~ r > / l '  
- t r  -~  oc, ~ >~ t_). ( 1 . 7 )  

where M is the Hartmann number. 
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To solve Eqs. (I. 6) we use the Laplace transformation 

co r 

l i U = e-S':u d'r, V = e SOy d'r. 

o o 

From (1.6) we obtain a system of Bessel equations for the images of 
U and V: 

d"-U i d U  
-~-r, + --;--~-r = (s § M~)U, 

d"-V i d V  
~-~. -F r - d - r  = (S + M2 -[- r-2) V , (1.8) 

with boundary conditions 

U = t , V = t  w h e n r = t ,  

U - * O , V - ' - > O  as r-~O*, (1.9) 
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Since images must become zero at infinity, from the two partic- 
ular solutions of each of Eqs. (1.8), presented in the form of Bessel 
functions of imaginary argument of zero order for (1.8.1) and of first 

order for (1.8.2), we must use only the one which contains the Mac- 
Donald function, i . e . ,  

U = AKo(r V ~ ) ,  V = BKt (r ~ s ~ ) .  (1.10) 

Determining the constants of integration A and B from the first 
boundary condition (1.9), we obtain 

U =  K, ( I / - -~ -~ -~ ;  ) , V - -  K ~ . ( ] / ~ )  " (1 .11)  

The originals u and v are found from the inversion formulas 

~+ioo . ~ .  
1 e K o . ( r u  ~-ds  

es v - -  

~--ico 

(I.12) 

Integrating (1.12) we reduce the problem to quadratures 

Ko (rM) 2 co Io (ra) No (~) - -  Io (u) No(r=) 

" =  K-o (M) + ~ I - Io -~ (~) + ~Vo~ (~) 
- -  0 - 

ct dcr 
• e-(e%MD': o;" -t" M~' (1.13) 

o o  

Kt(rM)  2 I I ,(ra) N~(a)--l~(ct)N,(ra:) 
v = ~ 4- ~ I,'- (~) + N d  (~) 

O 

X _(=,+M=), ~zda . (1.14) 
eta" -t- M ~ 

The friction coefficients Cf and the friction moment C M are 
given by 

2F Ou 

ao 
2 f exp [--(r e + M  e )'r erda ] Uorop 

AC ~-~  10 2 ({X) A U ~ 0  2 ( g )  ~ ~ - - ~ j '  ]~1 - -  ~I~ 
5 

(1.15) 

_4~ [- M K~.(M) --  Ko(M) 
= - -  Re [ 2 K~(M) q- 

oo 

2 I exp[ - - (a~q-MD~]  a d a  ] (ordp 
+ I  +-~g- i~.(: t)+ N1e(~) ae--~7~e f R2--  

0 

(1.16) 

As M "+ 0, Eqs. (1.14) and (1.16) become the solutions given in 

[5] for ordinary hydrodynamics. 
For case b the procedure is similar to thatgiven. 
C) The values of u, v, Cf, and C M can be found by numericai 

methods. However, they will be particular solutions which are not 
suitable enough for practical application. We will attem F. to obtain 
approximate formulas for C f  and C M. 

Numerical calculations showed that a sufficiently accurate approxi- 
mation is 

[I~ e (a) + Ni ~- (~)]-~ ..~ el= (i = 0_., 1); 

C0 = 1.886, Cx = t.244. (1.17) 

Then the quadratmes in (1.15) and (1.16) are calculate d [6] 

cO 

I exp [ - - (a  e + M ~)'c] 
C t  cr -t- M e ct ~ d~  = 

0 

Ci -  ~ '/ .  

Hence, in view of (1. i8), we recommend replacement: of (I .15) 
and (1.16) by the following approximate formulas: 

2 ~MK~(M) . Co_f[~ \1/, 
c,, = -  ~ L K--XTT~- + ~ ~ ~- ) x 

X exp (-- M2,) -- nM it - -  err (M u (1.19) 

K.(,,)+Ko(M) 
CM = - - •  K I ( M ;  q - t ' -  

w re'- [.\'~1 e x p ( - - M % : ) - - a * M [ t - - e H ( M V ~ - ) ] '  " (1.20) 

It follows from (1.19) and (1.20) that with increase in M the time 
required to attain the limit values of Cf and C M is reduced. Figures 1 
and 2 show the changes in C~ and C M for several values of M. The 
regions of steady and unsteady regimes in Figs. 1 and 2 are separated 
by dashed lines. These boundaries are drawn on the assumption that 
the regime is steady when Cf and C M differ from their limit values 
by no more than 1%. 

It is an interesting fact that in ordinary hydrodynamics u(r, r) + 1 
as "r --+ ~o [see (1.13)], i. e . ,  the fluid moves together with the cylinder 
as a solid body. When M ~ 0, there are limiting velocity profiles 
differing from u = const. To illustrate the effect of the number M on 
the velocity profiles in steady regimes, Figs. 3 and 4 show the results 
for calculations of the relationship between u/U 0 and r/r0, where r 0 
is the cylinder radius. It is clear that with increase in M the thick- 
ness of the boundary layer decreases, i . e . ,  the magnetic field 
"presses" the boundary layer against the cylinder. 

2. BOUNDARY LAYER ON SIDESLIPPING WING. 

A) Let a sideslipping wing (sideslip angle B) situated in a trans- 
verse magnetic field be instantaneously given a translational velo- 
city W0_. Since the flow characteristics are independent of the coordi- 
nate along the wing span, the equations of motion and continuity 
take the form 

Ou Ou Ou i Op O'u ~Bo 2 
3 F + " 3 T + w - 0 F  = p 0x + ~ a - 7 r  = ~ '  (2 .1)  

Ov Ov Ov O~v ~ Bo ~" 
p 

&~ 3w 
~ - + ~ 7 = 0 ,  (2.3) 

where u, v, and w are the velocity components in the direction of the 
chord, the span, and the normal to the surface of the wing, while x 
and z are the coordinates measured aIong the chord (along the normal 
to the generatrix of the wing) and along the normal to the wing sur- 
face, respectively. 

Equations (2.1) and (2.3) are not associated with (2.2) and, hence, 
they can be solved independently of the latter. This system is similar 
to that describing the development of a boundary layer on a body in a 
plane flow [2]. 

Equations (2.1) and (2.3) are solved with the following boundary 
and initial conditions: 

~ = >.>_0, t=0,  
u = v = w = O _  when [z  = O, t ~ O ,  

u - - . g ( z ) ,  v -+ g (z') as z - ~ ,  t > 0 .  (2.4) 
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From the boundary conditions (2 .4)  and Eqs. (2 .1)  and (2 .3)  as 
z -~ ~ we have  

I Op (dU ~ ~Bo ~" dV ~B~ 
--U ~;=--~), U - ~ = - - - - = V .  (2.5) Ox p p I . ' 1  

We note that  U corresponds exac t ly  with the veloci ty  distribution 
outside the boundary layer in the case of a p lane flow. We will assume 

gO aq u/uo 
O r 

Fig. 3 

it to be a known funct ion of the coordinate x.  Then  from (2.5.2) and 
the condit ion that in the incoming  flow 

Voo-= Wo sin [~, Uco = Wo cos ~3, (2 .6)  

it follows tha t  

V=Vooexp L p .)U(z)]" 
o 

We introduce the symbols 

u v U V 
u ~ = - -  v o = U ~ = - -  V o = 

(2.7) 

w �9 % 

= .  = =~ = T  

Uoo b aBo~"b M*" U=t 
B:--~-, ra= pUco-=- R ' "c-- b (2 .8 )  

where b is the chord of the wing. 
Then,  using (2.5.1) we can  write Eqs. ( 2 . 1 ) - ( 2 . 4 )  and (2 .7 )  m 

dimensionless form (superscripts ~ omit ted)  

Ou + Ou Ou Off O~u 
O ~b u " ~ -  + w -o ~z .~. U ( ~-~x + m ) + ~s2 . . . .  

Ov Ov Ov O"-v Ou Ow 
o ~ + u y E ~ + w ' ~ = = T ~ . - - m v ,  ~-z + - b T  = o_, 

:e 

V (x) = tg  13 exp - -  ra f-77~x~ ; 

U=V=w=O__ when = ; ,  ,~ >~ ~,  

u --, U (x), v - ,  V (~) as ~ -~ ~ ,  �9 > O. 

(2 .9 )  

(2 .10)  

As in [2], we will  seek the solution of system (2 .9)  and (2 .10)  in 
the form 

ap = 2 ~ [/o(x, n)q-~1~ (x, 11)+ x~]". (x, rl)-k- . . . l ,  

0r Oi~ . O/r . Oh 
~ = o, - N  + ~-~n + ~'-Nn + . . . .  
0r . Oh . oh. .~,) 

w =  ~b-E~ + T-~x -t- . .  

v=go( :~ , r l )+ , rg~( :r , , r l )+ 'dgo . , ( z , , ,1 )+  . . . .  ( ~ l =  . - - z ~ / .  ( 2 . 1 1 )  

Substituting (2.11.1) into (2 .9 )  and equat ing the coeff icients  of 
equal  powers of ~', we obtain 

O~g~ Og~ , .  
+ 2n ~ - ~ - - , , , q  = 2 r ~ ,  (2.12) 

IIz~= 28 [-- TU dU . O/i_z (-d'~x + ' n )  -Pro 011 -- 

i--Z 
_ y ,  (0 6 o% oi~ o , / ~ l  

j, ~=o \Ox 01q ~ O~ 10xO~/J '  (2 .13)  

/+~=i2.z 
i --1 [aly og~_ 0/~ Og~] 

~,/;------o 
jWk=i--I 

~=0 when i=0, ~=I when i>11, 

?=i when i=i, T=0when i>2. (2.14) 

The boundary and initial conditions are 

]r = ~--~ = gr : 0 when ~1 = 0 

0/o - .  0/i 
U(x), g o * V ( x ) ,  ~ - - . ' 0 ,  g ~ - - 0 ( i > ~ 1 )  as ~1--.o~. (2 .15)  

It follows from (2 .12 ) - (2 .15 )  that  for i = 0 

l 0]o t 
U(w)~'~ = V - ~ g 2  = e r r  n .  (2 .16)  

Taking into account  the results of [2], for i = 1 we can  write 

Oh 
= L  [~1, Jill], g l = L  [~1, II~r (2.17)  On 

The  function L has the properties 

L [n ,  ~ 1 < 0  (~>~0, O_<n<, ,o  ) 

L D1, kl(pr + k2~] = 

: klL [I 1, T1] -t- kzL [I1, (p..] (kl, k~. - -  const), 

and !the following form: 

t {C err ~1 -t- L [~1, (P] = - -  --if- ] f ~  (1 - -  2~1 ~) 

..rt 

- err n ~ r (n~ (t --  2n') exp ,}~ a@ -- Cn exp (-- 'r') + 
, )  

o 

71 

( - -  ~1") .~ (P 01) (t - -  2~l~)exp ~1" d~l + n e x p  

o 

c o  

( C =  f (p(~l) a(~l)d~l, G ( ~ l ) = ( t - - 2 q " ) e r f c ~ l e x p ~ l ' - - 2 ~ / .  (2.19} 
0 

The  equations for approximations of higher order can also be re -  
duced to ordinary equations,  which can be solved in quadratures. 

B) It follows from the results of [2] that: 

co 

(o'-/q = - 41  c (~) n .  (,n) d~, ( ~  1 = 
0 

Again from [2] 

= - 4 ~ c (~) m.~ 01) tin. 
o 

(2 .20)  
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Substituting II21 from (2.14) into (2.20.2) and using (2.16) we 
can write 

Ogal = U'VM14- UV'N -1- mVCt,  (2.22) 
Ovl/~=o 

o o  oo  

M l : 4  1 G(ml)~O])d~], ~(~]):(erf~])'(I erf~ld~), 

o o 

co  oo 

N = - ~  f, (~n)'c(n)en, c~=-41 ~c (n )~ , .  (2.2a) 
o 0 

After calculating the integrals in (2.23) we find that 

2 8 : - ~  
M I = C , - - - - - - ~ ,  N - ~ - - ~ a :  z (2.24) 

In view of (2.22), (2.24), and (2.16), the coefficients of friction 
on the wing surface are 

2 1 Im . . .  

2 V t { 
C z - / ~ - ~  u V~u i +  

4 U V" 
- I - ' c [ r a + U ' ( t - t -  3~ V U')]-}-  " "  }" (2.26) 

Formula (2.25) was obtained in [2]. It follows that the instant at 
which the boundary layer separates (if this happens)--found with only 
the first two approximations--is determined from (2.25) by 

�9 * = [ - -  m - -  U' (1 + %n-1)] -1. (2.27) 

Equations (2.25) and (2.26) are written most simply for the case 
of flow over a sliding flat plate in a homogeneous transverse mag-  
netic field. It follows from (2.5.1) and (2.10.1) that in this case: 

U = t  --rnx,  V = tg 8 (t - - rex) .  (2.28) 

Substituting (2.28) into (2.25) and (2.26), accurate to v 2 we ob- 
tain 

Cz 2 ' 2 ~[t-- 4ra .~,j 
Cx = tg ~ - -  tf~-R I f~  (1 - -  mx) - ~  'v + ..  (2.29) 

or with the same accuracy 

C z = tg ~ C x . (2.30) 

Result (2.30) agrees (with the accuracy indicated above) with 
the result obtained for steady flow over a sliding fiat plate in ordinary 
hydrodynamics ([7], for instance). 

.o2 I 

/ 
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