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THE UNSTEADY SPATIAL LAMINAR BOUNDARY LAYER IN MAGNETOHYDRODYNAMICS
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The equations of the unsteady plane laminar magnetohydrodynamic
boundary layer have been solved by several authors ([1-4], for in-
stance)., Below we solve some problems for the following cases of
spatial flows,

1. The boundary layer on an infinitely long cylinder to which a
translational velocity and rotation are instantaneously imparted.

2. The boundary layer on a sideslipping wing which has begun to
move with constant velocity.
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1. BOUNDARY LAYER ON CYLINDER ROTATING IN AN AXIAL FLOW.

A) The equation of motion of a viscous fluid in the presence of a
magnetic field normal to the surface of a body can be written in the
approximate form [1]

%‘;— = —p7IVp 1 vV —op BV, (1.1)

Where V is the velocity vector, p is the pressure, p is the density
By is the magnetic induction, o is the electrical conductivity of the
fluid, v is the kinematic viscosity, and t is the time,

Assume that the thickness of the boundary layer is small in com-
parison with the cylinder radius. Then, for the case under considera-
tion with a constant translational velocity U; and a constant angular
velocity w the projections of Eq. (1.1) onto the axial and circular
direction lines when the magpetic field is fixed relative to the fluid
(case a) will be

du 2u _ v 0% T
S =V 5% — % Beu, =V —08 1Bs.  (1.2)

Here u and v are the velocity components in the boundary layer
along the cylinder axis and in the circular direction; z is the coordi-
nate measured along the perpendicular from the cylinder surface,

If the magnetic field is rigidly connected with the cylinder (case
b), then

a i
v 8%
—5t— = Vﬁ—5p~13cf (17——0)7‘_(_)), (1.3)

where 14 is the cylinder radius.,

Equations (1.2) with corresponding boundary conditions are simi-
lar to those for the boundary layer on an infinite flat plate. Their
solution can be found in [1].

B) If the thickness of the boundary layer is comparable to the cy-
linder radius, Eqs. (1.2) are no longer valid. We write the equations

for case a in a cylindrical coordinate system

du v 4J du g
ot T r or (r 6r‘>“cp By'u,
v rt a v v _
8e =V T ar <r 0r>— rz_lﬁcp "B, (1.4

The boundary and initial conditions are

when r=ry ¢
as r>ry I

u=U_o, >
as r— oo, t>

u -0, v—>0 {

v = Wry

u 0 v vi o r
UD 3 v ::m‘—rb, Tu:r-oz, r :T‘» (1.5)
and henceforth omitting the subscripts 0 in the dimensionless quantities,
we obtain ’

du 1 9 du Y
= (rar) M

dv 1 4/ ov . \
G = et e ) — T M v, M:(

6Bo%rp® e
272 ) , 6)
vp

u=1, »=1 when r=1, >0,
u—->0 v-0 Whel’l{r>1’ ’l:=(_),
- - r o0, 0. (1.7
where M is the Hartmann number,
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To solve Egs. (1.6) we use the Laplace transformation
o? o
U —_—5 e STy dr, V= S e~y dr.
a o

From (1.6) we obtain a system of Bessel equations for the images of
U and V:

d 1 dU

dr5+ r dr=(S+M2)U’
d*v 1 dvV 2
drz‘i"’,.‘d,.:(""i‘Mz'f" V., 1.8

with boundary conditions
U==1,V=1 whenr=1,

U—0,V—->0 as r— oo. 1.9)
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Since images must become zero at infinity, from the two partic-
ular solutions of each of Eqs, (1.8), presented in the form of Bessel
functions of imaginary argument of zero order for (1.8.1) and of first
order for (1.8.2), we must use only the one which contains the Mac-
Donald function, i.e.,

U= AKo(r Vs + M), V = BK, (r Vs f M°).

Determining the constants of integration A and B from the first
boundary condition (1.9), we obtain

(1.10)

K GV K (e YT
Vs ' TRy &

The originals u and v are found from the inversion formulas

KKy (r Vi T R M)
i o Ko Vs+ Mﬂ) s

G

[ -

U =

n

G-+ico

1 S Ky (r Vs + M) se ds
=50 ®

—_————r—— —_ 1.1
KGVit e © s (1.12)

6—1i00

Integrating (1.12) we reduce the problem to quadratures
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0
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(1.13)
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o da
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Xe e

(1.14)

The friction coefficients C f and the friction moment Cy are
given by

2u (0_u> - _«?_[MK\(M)
Gy =203 \or )rmr,™ T Ri | Ko (0D)
2 ¢ exp [— (@ M)T]_od v
2 cexpl[—(a*+ M)T] ada ofop
+ :\:25 I (o) + No* () aﬂ—%M“:[’ Hl:T’ (1.15)
g 0
dap [ dv v
M= pabro? ar T)r___r_,,:
b om Ko (M) + Ko (M)
# [” K1 {41)
¢ oxpl M d %
2 Cexpl—(+ MYHT] ada @ro’p
+i+ n«S TE LNy @ p) = (1.16)
1]

As M — 0, Egs. (1.14) and (1.16) become the solutions given in
[57 for ordinary hydrodynamics.

For case b the procedure is similar to that given.

C) The values of u, v, Cf, and Cyps can be found by numerical
methods. However, they will be particular solutions which are not
suitable enough for practical application. We will attemj:. to obtain
approximate formulas for Cfand Cp.

Numerical calculations showed that a sufficiently accurate approxi-
mation is

U2 @)+ NF ()7 = G (1 =0, 1)

Co=1.886, C;=1.244. (1.17)

Then the quadratures in (1.15) and (1.18) are calculated [6]

a4 M ot da =

o
exp [— (o + MY v] |
o) e
4
*

2_;{(11‘_) exp (— M2y — M [1 — et (M V?)}., (1,18)

Hence, in view of (1.18), we recommend replacement of (1,15}
and (1,16) by the following approximate formulas:

o=~ et + A {(F)

Xexp (— M) — M [1 —eri (M V?)]H, (1.19)

4 [ M K2 (M) + Ko (M)
=T

Cor=— T,

. % {(—})x/ exp (— M) — M [1 — ert (M VF)]H. (1.20)

1t follows from (1.19) and (1,20) that with increase in M the time
required to attain the limit values of Cyand Cyy Is reduced. Figures 1
and 2 show the changes in Cf and Cy for several values of M. The
regions of steady and unsteady regimes in Figs. 1 and 2 are separated
by dashed lines. These boundaries are drawn on the assumption that
the regime is steady when Cy and Cy differ from their limit values
by no meore than 1%,

It is an interesting fact that in ordinary hydrodynamics u(r, 1) = 1
as T —> « [see (1.13)], i.e., the fluid moves together with the cylinder
as a solid body. When M # 0, there are limiting velocity profiles
differing from u = const, To illusirate the effect of the number M on
the velocity profiles in steady regimes, Figs. 3 and 4 show the results
for calculations of the relationship between u/Uy and r/y, where 1y
is the cylinder radius, It is clear that with increase in M the thick-
ness of the boundary layer decreases, i.e., the magnetic field
"presses™ the boundary layer against the cylinder,

2. BOUNDARY LAYER ON SIDESLIPPING WING.

A) Let a sideslipping wing (sideslip angle 8) situated in a trans-
verse magnetic field be instantaneously given a translational velo-
city Wy . Since the flow characteristics are independent of the coordi-
‘nate along the wing span, the equations of motion and continuity
take the form

ou du ou 1 8p &u B
Tt Y T T e TV 2.1
o v v %  SBo®
T vEE TV = VaE T
du Jw
w a0 (2.3)

where u, v, and w are the velocity components in the direction of the
chord, the span, and the normal to the surface of the wing, while x
and z are the coordinates measured along the chord (along the normal
to the generatrix of the wing) and along the normal to the wing sur-
face, respectively.

Equations (2.1) and (2.3) are not associated with (2.2) and, hence,
they can be solved independently of the latter. This system is similar
to that describing the development of a boundary layer on a body in a
plane flow [2].

Equations (2.1) and (2. 3) are solved with the following boundary
and initial conditions:

u=v=w=71_

when {Z>(—)’ t=0,
Z:Q_, >0

w—Uz), v-V(E) as z-r00, 10, (2.4)
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From the boundary conditions (2,4) and Egs, (2.1) and (2, 3) as
z —> « we have

1 op dU  6Bd® av sBg*
va=tlmrs) vE=—-

(2.5)

We note that U corresponds exactly with the velocity distribution

outside the boundary layer in the case of a plane flow. We will assume
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it to be a known function of the coordinate x, Then from (2.5.2) and
the condition that in the incoming flow

Ve=WosinB, U, =WycosB, (2.6)
it follows that
oBg? & dz
V=Yoo [~ §U<$>} @
We introduce the symbols

P LA
u:U ) ZJ=U°°1 D=Uoo’ —Uoo’

w - s z —
u°=m]v/ﬁ’, x°=—E‘, Z°=TVR’

v.b B M® Ut
R=~V—, n = ono_—‘_ r P 1,'=—b—' (2.8)

where b is the chord of the wing.
Then, using (2.5.1) we can write Eqs. (2.1)=(2.4) and (2.7) in
dimensionless form (superscripts ° omitted)
du due
aw: tugs trgs "U(dx+m>+a —mu,
ov v v s Ou dw

Tt =g Gyt =0
x
dx
V@ =tg Bexp| —m s | (2.9)
0

when {Z>(—)' T=%,

z2=0, T>

u——>U(x.), v—>V(x) as z—o00

(2.10)
As in [2], we will seek the solution of system (2.9) and (2.10) in
the form

=2 V7 [jo(z, ) + ¥ (2, M+ Pfa (e, M)+ .. .1,
ap e of af.,

U=E~=B_ﬁ'+ 1+ 2 = +...
ap af of
w=——‘3~z—=,-—2V (6:+ 0x+“aax+"')'
v=a e D aE i+, (=) @D

Substituting (2.11.1) into (2.9) and equating the coefficients of
equal powers of 7, we obtain

a7, 9%, 3,

57?’_*_2“37]’ 4LW 21

o

&g, o, .
a—ng—l—zn W—bgi: 2H2i' (2.12)
aU of;_
o, = __ ey -1 _
14 26[ YU (d:v +m)+m 7
i—1
_ 12 (af]af,‘ af_‘ﬁk_)} (2.18)
im0 dx o 9n dwdm /I
Jk=i1
S o108, 010
Iy, = 28 l:mgi_.1 — 2 < %8 _ fi _51‘)]7
i o 9r 9n on Ox
k=il
§=0 when i=0, §=1 when i>1,
v=1 when i=1,7=9wheni>2. (2.14)
The boundary and initial conditions are
af,
]’i:?ﬁ:gizg when n =0
dfo of;
Bn—»U(x) L=V (@), 5~ ——>0 g, ~>0(>1) as n>o0. (2.15)
It follows from (2.12)—(2.15) that for i = ¢
1 % 1
U(x)W_V(x)gl’:erfn' (2.16)

Taking into account the results of [2], for i = 1 we can write

oy
o=

=L[n O, ea=1L[n, My]. (2.17)
The function L has the properties
Ln, 1<0 (920, 0<n <o)
L[, k191 + k2] =
=k L[N, §1] + koL [, @2] (k1, k2 — const)s
and ‘the following form:

Ly, ¢]=— ——;— Va(—2p) {Cerfn—{-

@ (1) [(1 — 2P exp 1 erfn

(cm:s

dn —
Vn] !
1
—ertn {90t — 2w expafan} — Cnexp (— ) +
0

+ nexp(— 19 \ @(m) (1 —2nPexp n¥dn

| e S

(C:So @ (m) G (mdn, G(m=({ — 207 erfonexp n-—lf") (2.19)

The equations for approximations of higher order can also be re-~
duced to ordinary equations, which can be solved in quadratures.
B) It follows from the results of [2] that:

- 4§° G (n) oy (q) dn. (2.20)
°
Again from [2]
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Substituting I,y from (2.14) into (2.20.2) and using (2.16) we
can write

(%) — U'VM, -+ UV'N +mVC, (2.22)

=4S Gy man, w(m=(ertny ({ ertnan)
0

lot38

<0
(erf )° G (n) dn, cl-—4S erfnG(mdn.  (2.23)
0

=
II
IoJ>8

After calculating the integrals in (2.23) we find that

. 3
8 %

2
M1=C1=-V-—i, N=~3—:n:

(2.24)

In view of (2.22), (2.24), and (2.16), the coefficients of friction
on the wing surface are

Cy= V%Vi%U{1+-r{m+U’<l+ %—ﬂ-}-} (2.25)

(2.26)

Formula (2.25) was obtained in [2]. It follows that the instant at
which the boundary layer separates (if this happens)—found with only
the first two approximations—is determined from (2,25) by

= [ m— U (3] (2.27)

Equations (2.25) and (2.26) are written most simply for the case
of flow over a sliding flat plate in a homogeneous transverse mag-
netic field. It follows from (2.5.1) and (2.10.1) that in this case:

U=1—mz,

Ve=tgB{1 —mz). (2.28)

Substituting (2.28) into (2.25) and (2.26), accurate to 7 we ob~
tain
Cy 2 2 ( 4m
= e e 1 o), (2.2
BT VAR Ved—ms Vv 3m T R

or with the same accuracy

Cp=tgBCy. (2.30)

Result (2,30) agrees (with the accuracy indicated above) with

the result obtained for steady flow over a sliding flat plate in ordinary
hydrodynamics {[7], for instance).
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